Predicting fracture energies and crack-tip fields of soft tough materials

نویسندگان

  • Teng Zhang
  • Shaoting Lin
  • Hyunwoo Yuk
  • Xuanhe Zhao
چکیده

Soft materials including elastomers and gels are pervasive in biological systems and technological applications.Whereas it is known that intrinsic fracture energies of softmaterials are relatively low, how the intrinsic fracture energy cooperates with mechanical dissipation in process zone to give high fracture toughness of softmaterials is notwell understood. In addition, it is still challenging to predict fracture energies and crack-tip strain fields of soft tough materials. Here, we report a scaling theory that accounts for synergistic effects of intrinsic fracture energies and dissipation on the toughening of soft materials. We then develop a coupled cohesive-zone and Mullins-effect model capable of quantitatively predicting fracture energies of soft tough materials and strain fields around crack tips in soft materials under large deformation. The theory and model are quantitatively validated by experiments on fracture of soft tough materials under large deformations. We further provide a general toughening diagram that can guide the design of new soft tough materials. © 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Failing softly: a fracture theory of highly-deformable materials.

Highly-deformable materials, from synthetic hydrogels to biological tissues, are becoming increasingly important from both fundamental and practical perspectives. Their mechanical behaviors, in particular the dynamics of crack propagation during failure, are not yet fully understood. Here we propose a theoretical framework for the dynamic fracture of highly-deformable materials, in which the ef...

متن کامل

FRACTURE MECHANICS PARAMETERS ESTIMATION OF CCT SPECIMENS MADE OF X 5 CrNi 18 10 STEEL

For a reliable operation of structures and their components during exploitation period, it is crucial to monitor continuously or periodically check the integrity of structure. In the production and during exploitation, a certain amount of flaws can be encountered in any structure. It is important to determine how such flaws can influence the safety and reliability of the operation. Since fractu...

متن کامل

/-Integral Estimates for Strain-Hardening Materials in Ductile Fracture Problems

A finite-element procedure is developed to analyze plane ductile fracture problems in the presence of largescale yielding near the crack tip. Strain and stress singularities near the crack tip, corresponding to the strainhardening material model, are embedded in elements near the crack tip. The developed elastic-plastic incremental finite-element method is based on a hybrid displacement model. ...

متن کامل

On Macroscopic and Microscopic Analyses for Crack Initiation and Crack Growth Toughness in Ductile Alloys

Relationships between crack initiation and crack growth toughness are reviewed by examining the crack tip fields and microscopic (local) and macroscopic (continuum) fracture criteria for the onset and continued quasi-static extension of cracks in ductile materials. By comparison of the micromechanisms of crack initiation via transgranular cleavage and crack initiation and subsequent growth via ...

متن کامل

Influences of non-singular stresses on plane-stress near-tip fields for pressure-sensitive materials and applications to transformation toughened ceramics

In this paper, we investigate the effects of the non-singular stress (T stress) on the mode I near-tip fields lbr elastic perfectly plastic pressure-sensitive materials under plane-stress and small-scale yielding conditions. The T stress is the normal stress parallel to the crack faces. The yield criterion for pressure-sensitive materials is described by a linear combination of the effective st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016